Simulation Output Subsystem Status

B. Bush and K. Berkbigler

Los Alamos National Laboratory

25 March 1996 Page 1 of 24

Outline

- definition
- specification
- issues
- requirements
- design
- development
- usage
- status
- work underway

25 March 1996 Page 2 of 24

Definition

The output subsystem collects data from a running microsimulation, stores the data for future use, and manages the subsequent retrieval of the data.

25 March 1996 Page 3 of 24

Specification

- The simulation output subsystem will gather the data generated by simulations and provide access to it for other subsystems as soon as the data is received.
- The simulation output will be configurable and several predefined configurations will be provided.
- This subsystem will utilize the database subsystem to support metadata.
- It will support data distribution, data export, and archiving.
- Special provision will be made for dealing with the large amount of data generated by simulations.

25 March 1996 Page 4 of 24

Issues

- The CA microsimulation will generate large amounts of data on several computational nodes (CPNs) simultaneously.
- The computer communications network (ethernet, etc.) is required for simulation-related communication between CPNs; any other use of it will slow down the simulation.
- Users will want to specify what data will be collected, and when and where it will be collected.
- Users will want to retrieve only a portion of the complete data set, in order to perform analyses on data of interest.
- Users will want automated support for navigating through data sets.

25 March 1996 Page 5 of 24

Data Volume

- Approximately 30-60 bytes of data are needed to describe the state of a vehicle at any given time in the simulation.
- Data can conceivably be collected for each vehicle every time it is moved (currently, once per second).
- In the largest metropolitan areas, it is possible for 1,000,000 vehicles to be moving on the road network simultaneously.
- This means that a four-hour simulation could require 400-800 GB of storage, if all trajectory data is stored.
- Conclusion: The output subsystem has to efficiently store large amounts of data; it also must have the capability to *not* store data when it is not necessary to do so.

25 March 1996 Page 6 of 24

Requirements

- Data must be stored locally on each computational node, so that communication network traffic is minimized.
- Data must be retrieved globally, so that it can be analyzed anywhere.
- Several retrieval formats must be supported, so that postprocessing is flexible.
- The simulation output subsystem must have a general interface, so that it can collect data from any TRANSIMS simulation, not just the current CA-based simulation.

25 March 1996 Page 7 of 24

Requirements (continued)

- Both as the data is collected and when it is retrieved, it must be possible to summarize the data:
 - counting
 - averaging
 - accumulating
 - binning
 - statistical functions

This will reduce storage requirements and access time and minimize data transmission over the communication network.

- Metadata for each data set must be available, so that the data set is self-defining.
- The simulation output subsystem must have a "low overhead," so that it does not unduly slow a running simulation.

25 March 1996 Page 8 of 24

TRANSIMS Software Architecture

25 March 1996 Page 9 of 24

Connections between Subsystems

25 March 1996 Page 10 of 24

Internal Structure

Domain Knowledge Layer

25 March 1996 Page 11 of 24

Classes Involved in Trajectory Storage

25 March 1996 Page 12 of 24

Classes Involved in Trajectory Retrieval

25 March 1996 Page 13 of 24

Modularity and Reusability

- The simulation output subsystem is not dependent on the components of TRANSIMS that use it:
 - CA microsimulation
 - Analyst toolbox-related components
- The simulation output subsystem is dependent upon only two components of TRANSIMS:
 - Network subsystem
 - Database subsystem
- The simulation output subsystem can be used to collect data from any TRANSIMS traffic simulator, not just the current CA-based one.

25 March 1996 Page 14 of 24

Iterative Development

The development of the simulation output subsystem has proceeded according to an iterative development process.

- $\sqrt{}$ 0. Architecture
- √ 1. Design
- $\sqrt{}$ 2. Basic functionality
- $\sqrt{}$ 3. Optimization of basic functionality
- ⇒ 4. Summary Data Processing
 - 5. Enhanced disk storage

25 March 1996 Page 15 of 24

Usage

- The user specifies the following before a simulation run:
 - when and where in the traffic network to collect data
 - what data to collect
 - * raw data
 - * summaries
 - * distributions
 - * correlations
 - what data to filter out
- There are two basic types of data:
 - Evolution data is the trajectory information needed for animation, waterfall plots, debugging, etc.
 - Summary data is the statistical information needed for fundamental diagrams, measures of effectiveness, etc.

25 March 1996 Page 16 of 24

Usage (continued)

- The user specifies the following when retrieving data from a simulation run:
 - when and where in the traffic network to retrieve data
 - what data to collect
 - * raw data
 - * summaries
 - * distributions
 - * correlations
 - what data to filter out

Note that the options for collecting data from a simulation are the same as those for retrieving it from storage.

25 March 1996 Page 17 of 24

Data Collection

25 March 1996 Page 18 of 24

Data Retrieval

25 March 1996 Page 19 of 24

Current Status and Functionality

- Iterations 0, 1, 2, and 3 have been completed. This includes implementation, testing, and documentation.
- The simulation output subsystem has been linked to the CA microsimulation and collects basic "evolution" (i.e., trajectory) data.
- Data is collected locally, so as not to slow down the running simulation, but it is seamlessly accessed from the distributed file system when retrieval occurs.
- Both on collection and retrieval, the data can be filtered by time, frequency in time, node id, and link id.
- Retrieved data is stored in delimited text files (a standard import format for many commercial data analysis products).

25 March 1996 Page 20 of 24

Work Planned

- provide an ArcView interface for setting up output data collection
 - support map and spreadsheet input of collection specifications
 - add option to write CA and DumpEvolution input files
- have CA write output metadata
- enhance DumpEvolution
 - speed it up
 - improve the user interface
 - support dumping multiple specifications
 - provide diagnostic messages for missing data files
 - make it work while the CA is running
 - support the collection and retrieval of evolution data on a subset of a link rather than on the whole link
- support the collection of summary data on links^{*}
 - vehicle density, flow, velocity, count, lane occupancy
 - sample the data sparsely in space and time

25 March 1996 Page 21 of 24

^{*} We need input from users concerning the capabilities required here.

develop a DumpSummary tool similar to DumpEvolution

25 March 1996 Page 22 of 24

Work Deferred

- indexing the simulation output data files
- replacing the NFS-based storage currently used with a more sophisticated and efficient type of distributed storage
- collecting summary data at intersections

25 March 1996 Page 23 of 24

Summary Output Issues

- What types of summaries are required for the IOC-1 case study?
 - vehicle density, flow, velocity, count, lane changes
 - lane occupancy
 - correlation matrices [?]
 - histograms [?]
- How is the data sampled for summarization?
 - duration and frequency in time
 - location on the link
 - event-driven sampling [?]
- How much flexibility is required for the IOC-1 case study data collection?
 - predefined collection strategies
 - ad-hoc collection [?]

25 March 1996 Page 24 of 24